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Optimality criteria design is applied for large antenna structures with multiple con-

strgints on microwave performance.

The constraints are on accuracy of the structure:

restrictions on the microwave pathlength error, and the antenna pointing error. The
examples given show convergence to low-weight feasible designs that satisfy the con-
straints., Truss-member sizes are automatically selected from tables of commercially
available structural shapes, and approximations resulting from the method of selection are
Sfound moderate. The multiple constraint design is shown to be more effective in meet-
ing constraints than the old envelope method. For practical structures, the new design
method can be performed within reasonable core size and computation time.

. Introduction

Structure design optimization theory and its application to
a number of classical or academic problems have been described
in the past two decades (14). Consequently, there are now
theoretical design approaches to obtain low-weight structure
designs that satisfy a variety of constraints on structure per-
formance and safety. In particular, design approaches that use
optimality criteria (Refs. 1, 6,7, 10, and 15) are feasible for
the design of structures with large numbers of degrees of
freedom and/or design variables.

This article describes a specific application of the opti-
mality criteria method to design structures that satisfies con-
straints on compliance, member tension, and buckling stresses.
The model contains several thousand members and degrees of
freedom and tens to hundreds of design variables, substantially

more than encountered in design optimization models described
in research literature, The emphasis here is on the design of a
microwave antenna backup structure for which the design

variables are the areas of the truss rod members or the thick-
nesses of membrane plates. Microwave performance con-
straints limit: (a) the root-mean-square of microwave path-
length deviations from a surface thatis a best fitting alternative
to the originally specified surface and (b) the antenna boresight
pointing error. These constraints are functions of. the dis-
placements of the nodes of the structure that support reflec-
tive surface panels and must be satisfied for gravity and wind-
pressure loadings at specified operational wind speeds. Stress
and buckling constraints for gravity and operational wind-
speed loadings tend to be benign, but can become significant
at higher wind-speed survival conditions, or at other nonopera-
tional environmental conditions.




The following discussions provide a brief review of the
optimality criteria method and the pathlength error constraint.
A new method that formulates pointing error constraints is
introduced. A practical selection of structural members from
tables of commercially available shapes is also described.
Results from trial designs are given for the new 34-m (112-ft)
diameter ground DSN antenna shown in Fig. 1. Histories of
the design progress and comparisons of the efficiencies between
the simple sequential envelope method designs and new
designs that treat multiple constraints simultaneously are
given. Another example compares the selection of design
variables from commercial shape tables with the traditional
assumption of a continuous spectrum of shapes.

Il. Problem Formulation

Large ground antennas are essentially membrane-type struc-
tures in which the finite elements are rods (major) and plates
(minor). Consequently, only the three translational degrees of
freedom for displacements and forces at the structure nodes
are needed. For brevity, only rod element areas (design varia-
bles) with identical material properties are discussed. The
extensions to include the thicknesses of membrane plates as
additional types of design variables and to treat members of
different materials are straightforward (Refs. 7, 11, and 13).

A. Optimality Criteria Method

A brief formulation is provided for background. Further
details, variations, and implementation strategies are available
in the literature (Ref. 1,7, 10, 13, and 15).

The key components of an optimization problem formula-
tion are the objective function and the constraints. Here, the
design objective is to minimize structure weight, or equiva-
lently, volume, given as

N
V= Z La, )
=1

in which g, is the cross-sectional area, L; is the length, and 7 is
the index within a set of NV design variables, Primary constraint
equations are expressed as

In Eq. (2), F;; is a sensitivity coefficient such that the virtual
work of the ith design variable for the jth constraint is
Fi}-Li/a,. When the design variable group consists of only a
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single member, the sensitivity coefficient is the product of the
stress tesultant (bar force) for a specified external loading
and the stress resultant for an associated virtual (dummy)
loading divided by Young’s modulus. When the group contains
more than one member, the length-weighted average product is
used to compute the coefficient, and the length assigned to the
group is the total length of members. C;* is a prespecified
bound on the virtual work. In particular, when the displace-

" ment in a particular direction at a given node is the constraint,

then CJ* is that displacement bound and the virtual load is a
unit load applied at that node and in that direction. Stress
constraints for rod members can be converted to extension
constraints, and the virtual loading vector consists of a pair of
collinear self-equilibrating loads applied at the terminal nodes
of the member. Antenna pathlength or pointing error con-
straint virtual loadings consist of particular vectors with com-
ponents at all nodes that support surface panels.

Secondary constraints on the design variables can be
imposed as

l':l,...,N (3)

in which @, and a; are either user-established lower and upper
bounds on the design variable a, or dynamic adjustments con-
structed by algorithm. A possible replacement for a primary
stress constraint is a lower bound side constraint developed by
the stress ratio method. The replacement could produce signif-
icant computational savings and is valid for members that are
not strongly affected by structural redundancy.

Equation (2) can be written as

G, = C-Cr (@)

where Cj is the realized value of the virtual work for the jth
constraint and is given by the summation term of Eq, (2).

It is useful to define a constraint ratio, D]-, for which values
greater than unity indicate an unsatisfied constraint. This can

be computed as
= #
D]. C]./C’. (5)

The optimality criteria for the design variables for this problem
are

j=1,-,K ©

@ =3 F
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in which the 7\/ are nonnegative Lagrangian multipliers to be
determined from solution of the following auxiliary problem:

?\].G'j=0 j=1,-,K 7)

Strategies for solution of Eq. (7), typically either by Newton’s
method or a recursive approximation, have been discussed
elsewhere (Refs. 5, 6, 10, and 15).

The sensitivity coefficients, F ;> are assumed to be indepen-
dent of the design variables, but structural redundancy weakens
this assumption, so that the design must be approached
iteratively through a number of cycles in which the sensitivity
coefficients are recomputed. In the case of antenna gravity
loading, the loads are a function of the design variables, which

reinforces the need for iterative design. “Move” limits are-

often imposed upon the relative changes in design variables
between adjacent cycles in an attempt to control the effects
of redundancy or loading changes. These are invoked by
adjustments to the upper and lower bounds on design varia-
bles as expressed in Eq. (3).

B. Antenna Pathiength Constraints

Microwave pathlength errors are determined from the
original geometry of the surface and the deflection vectors of
the surface nodes. Figure 2 shows the surface geometry rela-
tionships. The solid line through the antenna vertex represents
the original ideal paraboloidal surface, and the broken line
represents the deflected surface. The microwave pathlength is
defined as the distance from the aperture plane to the surface
plus the distance from the surface (after reflection) to the
focal point and is shown by line BCP. In the figure, GD is the
deflection vector and dn is the component of the deflection
vector normal to the surface. It can be shown (Ref. 17) that
the half-pathlength error R is given by

R = (BCP - ADP)/2 = vy, dn (8)

where v, is the direction cosine of the surface normal with
respect to the focal (Z) axis.

In practice, the pathlength errors are computed from an
alternative paraboloid that best fits the deflected surface. The
best-fitting paraboloid is defined by at most six parameters,
i.e., there are three independent shifts of the vertex parallel to
the Cartesian X, Y, or Z coordinate axes, one relative change
in focal length, and two independent rotations, one about the
X (parallel to elevation) axis and the other about the Y (vaw)
axis. Then the vector of pathlength errors R with respect to
the best-fitting surface can be computed as follows:

R =Au+Bh )

in which u is an external loading displacement vector for the
nodes that support surface panels and the components of u are
aligned parallel with the Cartesian axes, h is the vector of fit-
ting parameters, and A and B are invariant matrices that con-
tain the geometric relations to transform u and h as required
by Eq. (8). Equation (9) is used as the basis of a least squares
analysis (Ref. 17) to derive h. In particular, we find

h=Hu (10)

in which H is again an invariant matrix derived from A and B
and is equal to

H = - (B"WB) !B’ WA (11)

where W is a diagonal matrix of weighting factors usually
taken to be proportional to the aperture area tributary to each
surface node.

It has been shown (Ref. 8) for a pathlength error constraint
that the virtual loading vector consists of loads directed normal
to the antenna surface at each node that supports surface
panels. The magnitudes of the loads are 72 dn, where dn is
with respect to the best-fit paraboloid. When this loading is
employed, the realized virtual work will become the sum of
squares of half-pathlength errors and will be identical to
the error computed by the usual geometric analysis of the
deflections.

It is common to refer to the “rms error” of a paraboloidal
antenna by the root-mean-square half-pathlength error from
the best-fitting paraboloid. This is derived from the weighted
sums of squares and the sums of the weighting factors,

In the cases of gravity loading, the pathlength errors at
particular antenna elevation angles are computed for the dif-
ference in loading between that elevation and the “rigging”
angle elevation. The “rigging” angle is the angle at which the
panels are aligned in the field as accurately as possible to the
ideal surface. Also, a single gravity loading can be constructed
to define an appropriate constraint to represent either the
maximum or a weighted average rms antenna pathlength error
over the range of elevations from horizon to zenith, For either
of these choices, there is an implicit computer algorithm
(Ref. 9) to determine the rigging angle. Figure 3 illustrates
different pathlength error distribution curves from horizon to
zenith for different choices of rigging angle.

C. Antenna Pointing Constraints

Five independent additive components that contribute to
the antenna boresight pointing error can be derived from geo-
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metric optics theory (Ref. 12) for Cassegrain antennas: Defini-
tions of the associated terms and the computational relation-
ships are contained within Table 1. The first two rows of
multiplying factors in the table apply to parameters of the
best-fit paraboloid that can be extracted from the vector h
that was defined in conjunction with Egs. (9) and (10). How-
ever, as seen from Eq. (10), the inner product of each row of
H with the displacement vector for external loading provides
the corresponding term of h. Therefore, the virtual loading is
derived from the appropriate rows of H multiplied by the
factors of the table, As H is invariant, it needs to be computed
only once for each structure, and it applies to all pointing
constraints.

The virtual loads for the remaining pointing error contribu-
tions, which are in the last three rows of the table, are con-
structed from loads placed at the nodes that define the rota-
tion and translations of subreflector and feed. The magnitudes
of these loads are the tabulated factors times the coefficients
of the equation used to define the rotation or translation. For
example, if the feed translation is defined as the average dis-
placement of two particular nodes in, say, the Y coordinate
direction, the virtual loading consists of loads in the Y direc-
tion at these two nodes with magnitudes of 0.5 times the
factor k/(mf). Furthermore, if part of the pointing error is
correctable by feedback from a sensor or encoder, subtractive
virtual loading components can be included so that virtual
work derived from this vector will provide the net pointing
error. The virtual loading vector for each constraint is the
union of the components constructed for each contribution to
the pointing error.

Ill. Candidate Design Variables

The selection of structural members is usually restricted to
a discrete set of commercially available cross-sectional shapes.
Nevertheless, the optimality criteria (Eq. 6) assume a contin-
uous spectrum for selection of design variables; consequently,
a rigorous approach would employ a different design method
(Refs. 2 and 16) to deal with the discrete spectrum. The
approach used here, however, is to perform the design first for
a continuous spectrum and then choose the nearest available
size that also meets lower bound stress side constraints. This
approach could theoretically lead to a nonoptimal selection,
but if the available shapes provide a well-graduated set of
properties without significant gaps, the departures from the
optimal selection should become insignificant.

Figure 4 is a sample from one of several tables constructed
for design within the JPL-IDEAS computer program. This par-
ticular table contains pipe and round-tube customary shapes.
Since these tables are assembled from local warehouse stock
lists, the data is in customary U.S. units. Under the heading
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HANDBOOK SHAPE, there is an abbreviated description of
the section, For example, entry number 2 is a 1-in. (25.4-mm)
schedule 10 pipe with 1.315-in (43.9-mm) outside diameter
and 0.109-in. (2.7-mm) wall thickness. The cross-sectional area
and radius of gyration are tabulated under the headings
AREA and RAD. The load table contains allowable compres-
sion loads in kips (4,448 N) for the span lengths listed at the
top. These loads are based upon the buckling stress formulas
for ASTM A-36 steel in the ASCE design guide (Ref. 4). The
design tension stress is also based upon the design guide, but
the allowable loading can be reduced by a percentage to cor-
rect for reduced cross sections at connected ends.

The table is used to set the lower bound side constraint for
compressive loads by using member length, maximum load for
all loading cases, and the buckling stress formula. The nearest
shorter-span-length column is searched for the first section
with a larger allowable load, and the buckling formula is
applied to determine the allowable load using the member
length with the area and radius of gyration of the identified
section. If the section is found to be inadequate, the section in
the next lower row of the table is tested until an adequate
shape is found. The shapes are listed in the table in the order
of increasing area so that the search finds the lightest member
to carry the load. Allowable loads tabulated as zero indicate
that the slenderness ratio for that entry would be greater
than an arbitrary limit of 200. The table is also used in each
cycle after execution of the design algorithm to find the shape
consistent with the lower bound side constraint that is closest
in area to the one determined by optimality criteria.

IV. Example Applications

Structure models for the 34-m antenna examples that fol-
low are extracted from design studies of NASA DSN antennae
(Fig. 1) scheduled to be installed in California and Australia in
1985. Design optimization will be described only for the tip-
ping structure, which consists of quadripod, reflector backup
structure, and elevation wheel. Design of the alidade, which
supports the tipping structure at the elevation bearings and at
the elevation-wheel pinion, is relatively simpler and is not
described here. ’

The tipping structure analytical model contains approxi-
mately 1145 nodes, 3400 unconstrained displacement degrees
of freedom, 3900 rod members, and 90 membrane plates, and
is redundant to about the 500th degree. The quadripod con-
tains about 200 nodes and consists of four towerlike legs
connected to an apex structure that supports the subreflector.
The backup structure (Fig. 5) consists of 24 main and 24 second-
ary radial rib trusses, 12 circumferential hoop trusses, and
other bracing. Parasitic reflective surface panels that support
only their own weights and local surface loads are attached to




450 front nodes of the rib trusses. Eight of the main rib
trusses are connected to and are supported by an octagonal
frame of the elevation-wheel structure.

The elevation wheel (Fig. 6) contains about 50 nodes,
provides the transition from backup structure to alidade, and
supports the elevation-wheel bull gear. Backup structure and
elevation-wheel structures are redundantly connected at eight
points, which complicates their design. Design of the quadri-
pod members is less affected by redundant coupling. Individual
bar and plate member elements are grouped for fabricational
convenience into 190 distinct design variable groups.

A. Design for Performance Constraints

Simultaneous rms pathlength and pointing error constraints
are imposed for gravity and wind loadings. The antenna rigging
angle is established to make the pathlength errors for gravity
loading equal at horizon and zenith antenna elevations.

The design example here is subjected to the nine pathlength
and pointing error constraints listed in Table 2. These nine
constraints are known to be the most demanding for this
model. No primary stress constraints are imposed; all stress
requirements are treated as side constraints with minimum
sizes established, as described previously, from commercial
shape tables, S

Although the performance constraints are specified for
operational wind speeds of 13.4 m/s (30 mph), the structure
must withstand wind speeds of 31.2 m/s (70 mph) at any
orientation and 44.7 m/s (100 mph) when stowed at the zenith
elevation. To satisfy these requirements, the wind-pressure
loadings applied for design are at the higher wind speeds, and
the allowable value for the constraint is increased accordingly.

The computer run was limited to six analysis cycles and five
design cycles. Figure 7(a) shows the cyclic progression histories
of structure weight and of the most severe constraint ratio.
Note that the designs at cycles 1, 2, and 4 are not feasible
because of constraint ratios greater than unity. Nevertheless,
the discrepancy at cycle 4 between actual and predicted con-
straint ratios indicates that the design procedure operated
correctly in cycle 3 by developing a design with a predicted
constraint ratio of unity. Unfortunately, the effect of struc-
tural redundancy produces the -unanticipated response in
cycle 4. The move limit used to control redundancy is equal to

1.5, which requires each design variable to be at least 2/3 and'

not more than 3/2 of its value in the prior cycle. A smaller
move limit could have overcome part of the excessive con-
straint ratio at cycle 4, but would have caused additional
problems at cycle 2. The predicted constraint ratio here is
greater than unity because the move limit activated a sufficient

number of side constraints to prevent the free choices of the
design variables necessary to satisfy the optimality criteria.

Figures 7(b) and (c) show the cyclic constraint ratio histo-
ries for the four pathlength error constraints and for the five
pointing error constraints. These figures show the dichotomy
of pointing and pathlength error performance. One example of
this is seen at cycle 4, where the gravity pathlength error con-
straint is exceeded although the pointing error constraint is
satisfied. Another example is the 0° elevation, 120° yaw wind-
loading case; the pointing error constraint is always active, and
yet, except for the first cycle, the pathlength error constraint
never is. Nevertheless, the design in Fig. 7 is successful because
there was no increase in structure weight from the first to the
sixth design cycle, and all nine excessive constraint ratios at
the first cycle became feasible at the sixth.

A more erratic design history is shown in Fig. 8. The struc-
ture model is analogous to but slightly larger than the previous
and has two more constraints. The effect of redundancy is
emphasized by the relatively large move limit of 2.0. This is
assumed to be responsible for the significant constraint viola-
tions at cycles 2, 3, 5, and 6 since the predicted constraint
ratios, which were close to unity at cycles 3 through 6, indi-
cate successful execution of the design procedure. In particular,
the design at cycle 4, which is 15% lighter than the initial, is
feasible because the large initial constraint ratio has been
reduced to unity.

B. Discrete Versus Continuous Design Variables

A design that chooses the nearest available discrete shape to
approximate the assumed continuous spectrum for design
variables is compared with a design based upon a continuous
spectrum. The 16-cycle histories shown in Fig. 9 are for design
of the backup structure of a hypothetical 40-m antenna. Sizes
of the design variables for the continuous design case are
determined by the optimality criteria whenever the lower
bound side constraint does not control; but whenever stress or
maximum slenderness ratio governs the selection, the appro-
priate discrete size is chosen. The small move limit of 1.25
was used in an attempt to obtain smooth convergence. The
normalized structural weights plotted were obtained after
feasibility scaling, which consisted of multiplying the structure
weight by the largest constraint ratio for constraint ratios
greater than unity. The figure shows that the small differ-
ences in weight in the early cycles tend to disappear as the
designs approach convergence.

C. Multiple Constraint Versus Envelope
Method Designs

The last example compares designs obtained by solving for
the Lagrangian multipliers simultaneously to satisfy the mul-
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tiple constraint conditions of Eq. (7) with the old envelope
method (Refs. 1 and 3). The envelope method uses sequential
explicit decoupled solutions for the Lagrangian multipliers and
applies the optimality criteria to each solution. The final selec-
tion of design variables at each design cycle is the envelope of
maximum values obtained from the decoupled solutions.

The example is for a 34-m antenna tipping structure model
similar to the one described at the beginning of this section,
but with only seven primary pathlength and pointing error
constraints. The design history in Fig. 10(a) shows similar
structural weights achieved for the fourth through sixth cycles.
Figure 10(b) shows that both methods have overcome signifi-
cant first-cycle violations of the first, fourth, and fifth con-

straints and that the two methods appear to be equivalent for

the third through seventh constraint ratios. But at the sixth
cycle, the envelope method is not feasible because of the first
and second constraints, while the multiple constraint method
is feasible for all seven constraints. Computer run times were
about the same for both methods.

V. Computer Resources

Problem size and storage capacity for the JPL-IDEAS
computer program is primarily limited by the requirement of
keeping a triangular matrix of maximum wavefront size in
core during stiffness matrix decomposition. The 34-m antenna
problem has a maximum wavefront of 220 degrees of freedom,
which requires core storage for about 55,000 36-bit words to
contain the double-precision decomposition triangle and asso-
ciated pointers. Program source code and other storage bring
the total requirement to 110,000 words. The design program
operates on a UNIVAC 1100/81 computer, which can provide
at least twice this in-core storage. Therefore, problems about
50% larger than this could be processed by the present
program.

One complete design cycle uses 348 central processing unit
(cpu) seconds. Of these, 90 s are associated with the design
problem: 83 s are used for constructing and solving the path-
length and pointing error virtual loading vectors, and the
remaining 7 s are used to determine the Lagrangian multipliers
and apply the optimality criteria. Furthermore, the 83 s for
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vector processing appears to be excessive and could be reduced
significantly by improvement of the present program.

One cycle for statics analysis with no provisions for design
would _require 336 s. This time is derived by subtracting
the 90 s used for design and adding 78 s used during a pre-
amble phase of the program to read and provide initial pro-
cessing of input data. The following times, in cpu seconds, are
used for analysis: stiffness matrix decomposition, 209; load-
displacement vector processing, 40; stress resultant recovery, 5;
pathlength and pointing error analysis, 4. A total of 2157 cpu
seconds is used for the six cycles of Fig. 7.

VI. Summary

The optimality criteria method is reviewed for design of
large ground antennas with performance constraints on micro-
wave pathlength errors. The formulation is extended to in-
clude constraints on antenna boresight pointing errors simul-
taneously with the pathlength constraints.

Examples drawn from practice show that significant per-
formance improvements and low structure weight are achieved
within as few as six cycles of computer analysis and redesign.
Furthermore, optimization was found not to extend maximum
core size requirements and adds only a moderate increase in .
the cpu time for a design cycle beyond that of a “standard”
analysis cycle. This implies that computer-automated design
optimization run times could be less than 10 times that for a
single analysis cycle.

A practical method is described to automate selection of
structural member design variables from a discrete table of
commercially available structural shapes. An example compari-
son of a discrete shape design with a design that assumed a
continuous spectrum shows no major discrepancies for the
approximations of discrete selection.

An example comparison of the older envelope design
method with the present simultancous multiple constraint
design method shows that, although the designed structure
weights are almost the same, the envelope method viclates two
of the seven performance constraints.




10.

11.

12,

13.

14.

15.

References

. Berke, L., and N. Khot, “Use of Optimality Criteria Methods for Large Scale Sys-

tems,” AGARD Lecture Series No. 70, On Structural Optimization, Hampton, Va.,
Oct. 1974, pp. 1-29,

. Cella, A,, and R. Logcher, “Automated Optimum Design from Discrete Compo-

nents,” Journal of the Structural Division, Proc. ASCE 97 (ST-1), Proc. Paper 7845,
Jan, 1971, pp. 175-189.

. Gellatly, R., L. Berke, and W. Gibson, “The Use of Optimality Criteria in Automated

Structural Design,” 3rd Conference on Matrix Methods in Structural Mechanics,
WPAFB, Ohio, Oct. 1971.

. Guide for Design of Steel Transmission Towers, ASCE Manual and Report on Engi-

neering Practice, No. 52, 1971.

. Kamat, M., and R. Hayduk, “Recent Developments in Quasi-Newton Methods for

Structural Analysis and Synthesis,” AIAA/ASME/ASCE/ACS 22nd SDM Conference,
Paper 0576, Atlanta, Ga., Apr. 6-8, 1981,

. Khot, N., L. Berke, and V. Venkayya, “Comparison of Optimality Structures by the

Optimality Criterion and Projection Method,” AIAA/ASME/SAE 20th SDM Confer-
ence, Paper 79-0720, St. Louis, Mo., Apr, 4-6, 1979.

. Khot, N,, L. Berke, and V. Venkayya, “Comparison of Optimality Criteria Algo-

rithms for Minimum Weight Design of Structures,” AI4A Journal, Vol. 17, No. 2,
Feb. 1979, pp. 182-190. '

. Levy, R., and R. J. Melosh, “Computer Design of Antenna Reflectors,” Journal of

the Structural Division, Proc. ASCE 99 (ST-11), Proc. Paper 10178, Nov. 1973, pp.
2269-2285.

. Levy, R., “Antenna Bias Rigging for Performance Objective,” IEEE Mechanical Engi-

neering in Radar Symposium, Wash. D.C., Nov. 8-10, 1977.

Levy, R., and W. Parzynski, “Optimality Criteria Solution Strategies in Multiple
Constraint Design Optimization,” AIAA4 Jourrnal, Vol. 20, No. 5, May 1982, pp.
708-715,

Levy, R., “Computer-Aided Design of Antenna Structures and Components,” Com-
puters and Structures, Vol. 6, 1976, pp. 419-428.

Rusch, W., and P. Potter, Analysis of Reflector Antennas, Academic Press, New
York, London, 1970,

Sander, G., and C. Fleury: “A Mixed Method in Structural Optimization,” Inter-
national Journal for Numerical Methods in Engineering, Vol. 13, 1978, pp. 385~
404,

Schmit, L., “Structural Synthesis: Its Genesis and Development,” AIA4 Journal,
Vol. 19, No. 10, Oct. 1981, pp. 1249-1263,

Schmit, L. A., and C. Fleury, “Structural Synthesis by Combining Approximation
Concepts and Dual Methods,” 4744 Jourial, Vol. 18, No. 10, Oct. 1980, pp. 1252~
1260,

15



16

16. Schmit, L. A., and C. Fleury, “Discrete-Continuous Variable Structural Synthesis
Using Dual Methods,” 4144 Journal, Vol. 18, No. 12, Dec. 1980, pp. 1515-1524.

17. Utku, S., and S. M. Barondess, Computation of Weighted Root-Mean-Square of Path
Length Changes Caused by the Deformation and Imperfections of Rotational Pa-
raboloidal Antennas, Technical Memorandum 33-118. Jet Propulsion Laboratory,

Pasadena, Calif., Mar. 1963.




List of Symbols

a cross-sectional area
2 lower limit on area
a upper limit on area
Cc* prespecified maximum value of constraint
C computed value for constraint in current design
D constraint ratio
dn normal component of distortion vector.
F sensitivity coefficient
G constraint equation
L length
R half-pathlength error
|4 volume
Yy direction cosine of the surface
A Lagrangian multiplier

Vectors and Matrices

u displacement vector

h vector of fitting parameters

A geometric transformation matrix

B geometric transformation matrix

H invarient matrix as defined in Eq. (11)
w weighting matrix (diagonal)

Subscripts

i design variable index

] constraint index

z -reference to the Z axis
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Table 1. Cassegrain antenna pointing error contributions

z
l ﬂ‘ FOCAL POINT Definitions
0 = beam deviation factor
Y [—~%——— SUBREFLECTOR (k ~ 0.75)
é % c+a
v 7 = magnification factor
Ll = _
MAIN / FEED PHASE m = (c+a)(c-a)
REFLECTOR GENTER (m ~ 5.0 - 10.0)
VERTEX
X
Contributing Factor
displacement X axis Y axis
Best-fit paraboloid
Vertex shift ~k/f kif
Rotation 1+k 1+%
Subreflector
Lateral translation QA -1/mk/f -1 = 1m)k/f
Rotation =2 c-Dklf -2 (c-a)k/f
Feed
Lateral translation ki(mf) ~k{(mf)
Pointing Error = % (Displacement X Factor)
Table 2. Performance constraints
Congdition
Wind,  Elevation,  Yaw, Half-pathlength Pointing,
root-mean-square,
m/s (mph) degrees degrees mm (in) arc seconds
13.4 (30) 0 120 0.330 (0.0130) 30.0
13.4 (30) 60 180 0.330 (0.0130) 30.0
13.4 (30) 90 90 0.330 (0.0130) 30.0
13.4 (30) 90 180 ] None 30.0
Gravity-worst case: 0.165 (0.0065) 75.0

horizon to zenith
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HANDBOOK PROPERTIES FOR PIPES
weawkl OAD TABLES®Swes

HANDBOOK

NO, SHAPE AREA  RAD SPAN LENGTHS

2. %0, 75 100, 125, 1%, 175, 200,
1.755TD, 1,06X,113 ,333 330 8.4 41 .0 .0 .0 .0 0 .0
1,0-10, 1,315X,109 413 430 1,2 83 3.9 0 .0 .0 .0 .0
31,0STD, 1,315X,133 494 420 13,3 9,8 4.4 .0 .0 .0 .0 0
£1,25-10, 1.66X,109 ,531 550 15,0 12,4 8,2 4,6 .0 0 .0 .0
51,5-10,1,90X,109 613 ,630 17,7 152 12,2 7,0 45 .0 0 .0
6)1,255TD, 1,66X,140 669 540 18,8 15,5 9.9 56 .0 0 0 .0
72,010, 2,375X,109 776 .80 22,9 20,6 17,9 142 91 63 .0 .0

Fig. 4. Excerpt from common member shape table

(o) (b)

45° SECTOR

CONNECTIONS (8)
TO ELEVATION
WHEEL BELOW

ELEVATION __
AXIS

CONNECTION
TO ELEVATION
WHEEL

REPETITIVE SECTOR

Fig. 5. 34-meter antenna backup structure: (a) surface nodes; (b) repetitive sector
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SIDE VIEW

PLAN VIEW BELOW

BACKUP STRUCTURE
Fig. 6. 34-meter antenna elevation wheel: (a) plan view below backup structure; (b) side view




STRUCTURE WEIGHT —
(NORMALIZED)

ACTUAL
LARGEST
CONSTRAINT
RATIO

LARGEST ACTUAL
CONSTRAINT
RATIO =1

1.0~

CONSTRAINT AND WEIGHT RATIO

STRUCTURE WEIGHT

\LARGEST PREDICTED (NORMALIZED)

CONSTRAINT RATIO
| I | !
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(b} JGRAVITY  WIND 40° ELEVATION = 180° YAW
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y A

CONSTRAINT RATIO
o
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9 (60-100) A 0.5k | | | |
5 1.0 1 2 3 4 5 6
& —_——— = = CYCLE
z
I 90~180) . .
,34_( ( ) GRAVITY Fig. 8. 34-meter antenna cyclic weight and constraint ratio history,
2 move limit = 2.0
5 0.5— —
Q
NOTE: OPERATING WIND SPEED 13.4 m/s (30 mph)
0 1 | | |

1 2 3 4 5 6
DESIGN CYCLE

Fig. 7. 34-meter antennatipping structure design history: (a) weight

and controlling constraint ratios; (b) pathlength error constraint
ratios; (c) pointing error constraint ratios
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DISCRETE

CONTINUOUS

NORMALIZED FEASIBLE STRUCTURE WEIGHT

1 ] ] ]
0 4 8 12 16

CYCLE

Fig. 9. 40-meter backup structure designs: discrete vs continuous
design varlables
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Fig. 10. 34-meter antenna simuitaneous muitiple constraint en-

velope method designs: (a) structure weight history; (b) sixth cycle
primary constraint ratios
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